
A Hybrid Approach for Proving Noninterference
and Applications to the Cryptographic Verification of Java Programs

Ralf Küsters∗, Tomasz Truderung∗, Bernhard Beckert†, Daniel Bruns†, Jürgen Graf† and Christoph Scheben†
∗University of Trier, Germany †Karlsruhe Institute of Technology, Germany

I. INTRODUCTION

The problem of checking noninterference properties of
programs has a long tradition in the field of computer
security and, in particular, in language-based security. A
program is called noninterferent (w.r.t. confidentiality) if
no information from high variables, which contain confi-
dential information, flows to low variables, which can be
observed by the attacker or an unauthorized user. Several
tools and approaches exist in the literature for checking
noninterference. Some approaches, such as type checking,
abstract interpretations, and program dependency graphs,
with tools including Joana, JIF, and TAJ, have a high
degree of automation, but they overapproximate the actual
information flow, and hence, may produce false positives.
Others, such as those based on theorem proving, with tools
such as KeY, Isabelle, and Coq, allow for very precise
analysis, but need human interaction and, hence, analysis
is often time-consuming

Certainly, fully automated tools are preferable over inter-
active approaches. However, if automated tools fail due to
false positives and the analysis cannot further be refined by
these tools, because, for example, the tools do not allow this
or run into scalability problems, the only option for proving
noninterference so far is to drop the automated tools alto-
gether and instead turn to fine-grained but interactive, and
hence, more time-consuming approaches, such as theorem
proving. This “all or nothing” approach is unsatisfying and
problematic in practice.

In this paper, we therefore propose a simple, tool-
independent approach, which we call hybrid approach and
which allows one to use automated analysis of noninterfer-
ence properties as much as possible and only resort to more
fine-grained analysis at places in a program where necessary,
where the latter analysis requires checking merely specific
functional properties in parts of the program, rather than
checking the more involved noninterference properties (for
the whole program).

While our hybrid approach should be widely applicable—
it is not tailored to specific tools or specific applications, and
the basic idea is quite independent of a specific programming
language—, our main motivation comes from the problem
of checking, on the implementation level, cryptographic
properties of programs (that use cryptography), where here

we consider Java programs. This has become an active field
of research in the last few years. In this paper, besides
the hybrid approach, we make contributions also to this
problem, which are of independent interest. More precisely,
the contributions of this paper are as follows.

Our hybrid approach is stated and proven for the language
Jinja+, a rich fragment of Java. The basic idea underlying
this approach is as follows: Given a program P, we first
run an automated tool on P. If this fails due to (what we
think are) false positives, we add some code, following
rules of our approach, to P at places where the tool has
problems, to make it more explicit and more clear for the
automated tool that there is no illegal information flow. A
typical case is that we add an assignment to a variable with
an expression that makes explicit that this variable does
not depend on high input. (Formulating the expression may
require to gather some data at other places in a program.)
It might be necessary to iterate this process until the tool
does not produce false positives. Let P′ denote the resulting
extension of P and assume that the automated tool showed
that P′ has the desired noninterference property. Now, we
need to show that P′ is what we call a conservative extension
of P′. This basically means that P and P′ behave the same,
i.e., the additional code did not change the behavior of the
original program. In particular, if an assignment was added,
then right before the execution of the assignment the variable
should already have the value that is then assigned to it. In
other words, the assignment is redundant. Proving that an
extension is conservative would now typically require some
more precise and possibly interactive tool. However, the
analysis should typically be restricted to certain fragments
of the program (namely parts in which the automated tool
had problems) and involve merely the analysis of specific
functional properties, rather than checking the more intricate
noninterference properties (for the whole program). The key
property that we show for the hybrid approach to work is
that if P′ is noninterferent and is a conservative extension
of P, then P is noninterferent as well. To the best of our
knowledge, this seems to be a new approach for proving
noninterference.

As mentioned, our hybrid approach should be widely
applicable. The basic concept is quite independent of a
specific programming language. Also, the approach is not
tailored to specific tools or applications.



The application domain for the hybrid approach we are
mainly interested in is the problem of checking crypto-
graphic indistinguishability properties for Java programs. In
[3], a framework was developed that enables tools that can
check (standard) noninterference properties for Java pro-
grams, but a priori cannot deal with cryptography (probabil-
ities, polynomially bounded adversaries), to establish cryp-
tographic indistinguishability properties of Java programs.
The framework combines techniques from program analysis
and universal composability. Given a Java program (that
uses cryptography), the idea is to first check noninterference
for this program where cryptographic operations (such as
encryption) are performed within so-called ideal functional-
ities, in the sense of universal composability. The framework
then guarantees that the actual Java program, where the ideal
functionalities are replaced by the actual cryptographic oper-
ations, enjoys cryptographic indistinguishability properties.

In a case study, we use the hybrid approach and the
mentioned framework to establish cryptographic privacy
properties for a simple e-voting system implemented in Java.
In this system, voters can send their votes over a confidential
and authenticated channel (realized using public-key encryp-
tion and signatures) to a server which, after the voting phase
is finished, calculates the result of the election and posts it,
using an authenticated channel (realized using signatures),
on a bulletin board. Everybody can then obtain the result of
the election from the bulletin board. Since we are interested
in checking privacy of votes for this system, in a set-up
phase, the adversary can provide two vectors of votes for
honest voters. It is checked whether these vectors result in
the same election outcome, i.e., whether the number of votes
for each candidate is the same. If this is not the case, the
system aborts. Otherwise, honest voters vote according to
one of the vectors provided by the adversary. Which vector
is chosen depends on a secret (high) bit. Now, the system
provides privacy if the adversary cannot distinguish which
of the two vectors was chosen. In other words, secrecy of
the high bit is preserved, a property which, based on the
mentioned framework, we would like to establish by an
automated tool for checking noninterference. In our case
study, we use the fully automated tool Joana [2] for this
task.

The problem is that Joana produces a false positive (and
probably all other automated tools would do this for our e-
voting system). Joana cannot see that the publication of the
election outcome does not constitute an illegal information
flow. Roughly, the reason that there is no information
leakage is that the election outcome is determined by the
vectors provided by the adversary, which constitute low
input and induce the same election outcome. So provided
that the server calculates the correct result, it should in fact
correspond to the result induced by the vectors. Now, in
order to see that there is no illegal flow, Joana would have
to verify that the server calculates and outputs the correct

result, namely the one induced by the vectors. This is beyond
what Joana can do.

Using our hybrid approach, in combination with Joana and
the theorem prover KeY [1], we can nevertheless establish
the desired property for our system, where KeY needs to
prove only the functional property that the server correctly
calculates and outputs the election result. The fact that
otherwise the clients, the server, and the bulletin board do
not leak secret information is established by Joana. We note
that the analysis with KeY is mostly finished but is ongoing
work.

In order to apply the mentioned framework to this case
study — by which we obtain cryptographic guarantees
by verifying (standard) noninterference properties —, we
need to provide an ideal functionality for secure message
transmission, i.e., confidential and authenticated message
transmission, as well as an ideal functionality for authen-
ticated message transmission, and we need to show that
these functionalities can be realized using standard (IND-
CCA2-secure) encryption schemes and (EU-CMA-secure)
signature schemes. By the framework, it then suffices to
verify noninterference of our e-voting system when it uses
these functionalities instead of the actual cryptographic
schemes.

These ideal functionalities and their realizations are of
general interest. They can be used beyond this particular
case study to establish cryptographic indistinguishability
properties for Java programs that use such primitives. They
also further instantiate the framework of [3], for which so
far only an ideal functionality for public-key encryption has
been considered. As such they constitute another important
contribution of our work. The proofs of the realizations of
these functionalities are non-trivial. They are carried out in
a modular way. While in the cryptographic literature similar
functionalities and their realization have been considered
before in a Turing machine model, here these functionalities
are formulated in Java and they can actually be used in Java
programs. This requires some care. In addition, the proofs
are carried out with respect to Jinja+ semantics.

REFERENCES

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel, Woj-
ciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H.
Schmitt. The KeY tool. Software and System Modeling, 4:32–
54, 2005.

[2] Christian Hammer and Gregor Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow control
based on program dependence graphs. Int. J. Inf. Sec.,
8(6):399–422, 2009.

[3] Ralf Küsters, Tomasz Truderung, and Jürgen Graf. A Frame-
work for the Cryptographic Verification of Java-like Programs.
In IEEE Computer Security Foundations Symposium, CSF
2012. IEEE Computer Society, 2012. To appear.

2


