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Trust Opinions
Agents interact over the internet. Some of these interactions involve an agent without a guarantee that the
other agent will perform his task adequately. There are many reasons for an agent not to perform his task
adequately, such as monetary gain (e.g. not delivering a purchased good), cutting corners (e.g. delivering
nonsense rather than data in a cloud), ineptitude (e.g. an online service being off line), etcetera. Rather than
focussing on underlying motives or qualities, we lump these problems together as unsuccessful interactions, or
failures. Hence we may observe that some agents are inherently more likely to fail in interactions than others.
Furthermore, past interactions with an agent is a predictor of the likelihood of failure in the next interaction.

A model that has precisely these assumptions is the Beta model. In the Beta model, trust opinions are
represented as beta distributions. A beta distribution takes two parameters that depend on the number of
observed successes and failures. The random variable R in the distribution, has the property that if R = x,
then the probability of success is x, so P (E = s|R = x) = x.

The Beta model does not support recommendations. In a recent technical report1, we have formally
introduced recommendations of the shape N× N. A recommendation (s, f) by agent B (about agent C) is a
claim of B that B has interacted s + f times with C, and that s of those interactions were successes, and f
failures. An agent A may receive such a recommendation from B, and establish an opinion on the basis of
that recommendation. If A knows that B is always honest, he can take the beta distribution based on (s, f).
However, in general, B is not always honest.

The shape of the resulting trust opinion of A is not generally a beta distribution. In fact, the resulting
trust opinion of A can be characterized as p · β(s + 1, f + 1) + (1 − p) ·

∑
0≤i,0≤j wi,jβ(i + 1, j + 1). The

factor p is the probability that B provides an honest recommendation, and the factors wi,j depend both on
the probability that B says (s, f) when B actually observed (i, j) and on the probability that B has observed
(i, j). In other words, the trust opinion of A based on the recommendation of B is a weighted sum of beta
distributions.

Information of Recommendations
The trust opinion based on (0, 0) is the uniform distribution on [0, 1]. The trust opinion based on (N,N),
for large N , is close to the point distribution on 0.5. Both have an expected value of 0.5, but the former
distribution feels somehow less informative than the latter. For one, the (Shannon) entropy of the former is
much larger than the entropy of the latter. Another explanation is that the former is based on 0 interactions,
whereas the latter is based on 2N interactions. We could pick either as a representation for the amount of
information of the distribution, but the result of the choice differs. For example, a trust opinion based on (5, 0)
has less entropy (more information) than a distribution based on (3, 3), but less interactions. In this section
we compare the two types measures.

Interactions
The most straightforward measure of information is the number of interactions required for the distribution.
In the case that the trust opinion is a beta distribution, the number of interactions required is obvious. It is
less obvious if the trust opinion is a sum of different beta distributions.

We need a measure that provides the right answers for beta distributions, that provides a unique answer
for a distribution, and that provides intuitive answers for values between two beta distributions. Say that we
have two trust opinions both being the weighted sum of a beta distribution with many interactions and a beta
distribution with little interactions; the trust opinion that values the beta distribution with many interactions
more is expected to be more informative. The uniqueness requirement is obvious, but not trivial. Considering
that β(1, 1) = 0.5 · β(2, 1) + 0.5 · β(1, 2), the measure must be equal for both sides.

We can construct a measure based on the notion that for every s, f , there are a, b such that β(s+1, f+1) =
a · β(s+ 2, f + 1) + b · β(s+ 1, f + 2). Using that notion, it is possible to convert every weighted sum of beta
distributions

∑
i wi ·β(si +1, fi +1), with si +fi ≤ n, into a sum

∑
j vj ·β(s′j +1, f ′j +1) with s′j +f ′j = n. For

example, 0.5 ·β(1, 1)+0.5 ·β(2, 1) = 0.75 ·β(2, 1)+0.25 ·β(1, 2). We can use the total difference
∑

j |
1

n+1
−vj | as

a basis for the measure, as it has the property that it is invariant over increases of n. More precisely, we need
to multiply that with n+1

2
, to normalize it to number of experiments, making n+1

2
·
∑

j |
1

n+1
− vj |. Although

this measure adheres to the three properties we required, it does have some counterintuitive properties.

1 http://satoss.uni.lu/members/tim/papers/TrustChainingTechReport.pdf
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Fig. 1. Solid: Graph based on (2,4): β(3, 5).
Dashed: Graph based on (0,1): β(1, 2).
Dash-dotted: Graph based on weighted sum
of the others: 0.5 · β(3, 5) + 0.5 · β(1, 2)

a bf HaL

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Fig. 2. A beta distribution β(6, 9) multiplied
with 0.5. The line f(a) has the property that
max(f(a), β(6, 9)) has a surface area of 1 in [0, 1].

Furthermore, it can only be applied to finite weighted sums of beta distributions.
There is a better measure that is congruent to measuring the number of experiments, based on entropy

measures.

Entropy
A standard way of representing information content is entropy. Contrary to the method based on interactions,
it generalizes neatly to other distributions. If we have a discrete random variable X, the entropy is given∑

x P (X = x) · log(P (X = x)). If we have a continuous random variable X, the entropy is given
∫
X
fX(x) ·

log(fX(x))dx. Say we want to use the notion of entropy to represent the information content of a trust opinion,
then we need to select a random variable. There are two obvious candidates, the (continuous) random variable
representing the reliability of an agent (i.e. the random variable that is distributed), or the (discrete) random
variable representing the next outcome.

If we are interested in information regarding the reliability of agent C, the natural choice is to look at
the entropy of the random variable representing that; RC . However, we may not actually be interested in the
exact value of RC . Whether RC is equal to 0.501 or 0.502 may not be important, yet information-wise these
two values are treated as completely different values. We can imagine that whether RC equals 0.01 or 0.02
does matter (and contrary to values near 0.5). But ironically, if the distribution is based on (0, 10) we have
more information about RC then when the distribution is based on (5, 5) (see Figure 1). In other words, if
RC is close to 0 (or 1), the information about RC increases, but the required precision does too.

An interesting scenario arises, if we pick RC to be the measure of information. If a recommender is forced
to tell the truth with probability p, and can lie otherwise, the information content of his recommendation is
that of p · T + (1− p) · L. In Figure 2, we can see an example, where p = 0.5 and the truth T is β(6, 9), and
the lying strategy L is chosen to maximize the total entropy of the graph. For us, an open question is whether
we can generally find exact values for a and b, which is required for finding L.

Arguably, we are not interested in the (exact) value of RC . If we are interested in information regarding
the next outcome of C, we should study the entropy of the random variable representing the next outcome;
EC . Recall that P (EC = s|RC = 0.5) = 0.5, meaning that the outcome is equivalent to a fair coin flip,
which has 1 bit entropy. However, RC is not a fixed number, but has a distribution, hence we should take
the expectation of the entropy of EC :

∫ 1

0
fRC (x) ·H(EC |RC = x)dx. If RC happens to be somewhere around

0.5, then increasing the number of interactions is increasing the entropy too (decreasing the information).
This measure of entropy on the the distribution based on (0, 0) gives 0.721348 bits of entropy, but (100, 100)
gives 0.996402 bits of entropy. We lose 0.996402 − 0.721348 = 0.275054 bits of information (about the next
outcome), when we have more interactions.

The problem with studying the expected entropy of EC , is that it is strongly biased around 0.5. Let Ex
C

and Ey
C be random variables corresponding to EC given RC = x and RC = y, respectively. Then we can study

the expected relative entropy of Ex
C with Ey

C :
∫ 1

0

∫ 1

0
fRC (x) · fRC (y) · DKL(Ex

C ||Ey
C)dxdy. Essentially, this

measures the entropy of the outcome of the interaction with a randomly (according to the distribution fRC )
selected reliability x, relative to the outcome of an interaction with the true machine with unknown reliability
y (distributed with fRC ). The important characteristic of this approach is that it is insensitive to whether
a number of interactions provide the same outcomes (e.g. many success, little failures), or similar amounts
of each outcome, meaning that the information in (5, 5) is identical to the information in (10, 0). Moreover,
the entropy of the beta distribution based on s successes and f failures equals 1

s+f+2
. Recall that entropy is

the converse of information, so if s+ f increases, we expect the entropy to decrease towards 0. This entropy
measure combines the best of both worlds, but has the peculiar side effect that the uniform distribution does
not provide the minimal entropy (but β(0, 0) does).


