
Boosting Verifiable Data Streaming

Dominique Schröder

Saarland University

Mark Simkin

Saarland University

March 7, 2013

1 Summary

Recently, Schröder and Schröder (SS12, ACM CCS’12) addressed the following problem: how can
a computationally weak client Alice with long-term storage of size O(logN), who generates more
data than she can store, stream its entire data to Bob, who has seemingly unlimited storage, to
store a sequence of N records. In addition, the stream should be publicly verifiable, meaning that
Bob can issue publicly verifiable proofs for particular records stored at particular indices in the
sequence. Furthermore, Alice can e�ciently update any record. This primitive was called verifiable
data streaming (VDS) protocol and it was shown how to obtain an e�cient VDS protocol from a
chameleon authentication tree (CAT). The VDS protocol ensures that Bob cannot alter or append
any records, in the sense that he cannot convince any third party, that has access to the public key,
of such a modified or new record being stored in the CAT. A CAT is a binary tree of polynomial
depth where the leaves can be authenticated on the fly, i.e., without re- or pre-computing the whole
tree. The basic idea of their construction is a combination of hash functions and chameleon hash
functions in a Merkle tree. Although this construction has many appealing properties, we could
identify several weaknesses:

Number of elements: The depth of the tree has to be fixed during the setup phase and cannot
be changed afterwards. In particular, this means that once the tree is full, no further elements can
be added. In (SS12) it was argued that this would not be a problem, because the data structure
could handle a polynomial depth and therefore an exponential number of elements. In practice
however, this turns out to be an issue because one would like to keep the depth of the tree as low
as possible in order to minimize the computational costs, the storage on both, the server’s and the
client’s side. The overhead created by the proofs depends on the tree’s depth and should also be
reduced.

Long proofs: Since the proof size depends on the depth of the tree, even the first few elements
in the tree have relatively long proofs. This is highly undesirable from a practical point of view.

Strong assumptions: A careful analysis of the security proof of shows that chameleon hash
functions are not necessary for obtaining CATs. In fact, we show that a weaker primitive, namely
trapdoor commitments schemes (TDC), are su�cient. This result has two major implications: (1)
On the theoretical side our result shows that VDS can be obtained from one-way functions (OWF),
because TDCs can be constructed from OWFs in a black-box way. (2) On the practical side we
can obtain a more e�cient instantiation of CATs, that reduces the clients state by 50%.



Fully dynamic t-bounded dynamic Optimal depth From OWF ROM

(SS12, CCS’12) 7 7 7 7 7
Construction 1 3 3 3 7 3
Construction 2 7 3 3 3 7

Table 1: Comparison of the di↵erent constructions. ROM means that the security proof only holds in the random
oracle model and OWF indicates whether the construction can be build/obtained from one-way functions.

Applications

VDS protocols have many natural applications such as Google drive, Dropbox, Apple’s iCloud,
and many more. All these applications follow the basic idea that users can outsource most of
their data to a seemingly unbounded storage. Probably the most famous example is Google’s
Chromebook, where users store most of their data in the cloud. Each user is provided with some
free online storage, which can be extended at the owners expense. VDS considers the ordering of
the elements in the stream, which turns out to be a natural requirement in computer science. A
further application of VDS can be found in the stock market. There, one common task is the live
streaming of stock quotes, i.e. stock information such as the bid, ask price, or the volume traded
of a given stock, to a central server. The server should not be able to alter or rearrange the stock
quotes to influence traders, who request stock information from it.

Our Contribution

The contribution of this paper is twofold. We provide theoretical and practical improvements over
the existing protocol (see Table 1 for a comparison). On the theoretical side we show that CATs
can be obtained from weaker assumptions like the existence of one-way functions. On the practical
side we provide two more e�cient constructions. We summarize our contributions as follows:

Dynamic CATs: On the practical side we introduce the notion of fully dynamic chameleon au-
thentication trees (f-CAT). An f-CAT is a CAT whose depth grows dynamically in the number of
leaves. In particular, it can store an arbitrary amount of leaves and the trees depth is minimal with
regards to the amount of leaves it currently contains. We suggest a first instantiation (Construction
1, see Table 1) that is secure in the random oracle model. Although the random oracle model has
been discouraged by several works, we believe that for practical schemes it still is a reasonable
model. In particular, to the best of our knowledge, no (natural) scheme whose security relies on
the random oracle model has been broken so far.

The second scheme (Construction 2, Table 1) is slightly more restricted in the sense that the
tree still grows dynamically in the depth, but only up to a predefined bound t. The value t can
be an arbitrary polynomial but needs to be fixed during the setup. We refer to these schemes
as a t-bounded dynamic CAT (t-CAT). This construction is secure in the standard model. Since
the public-key is large, the second scheme is a tradeo↵ between e�ciency and the underlying
assumptions.

Implementation: We provide Java implementations of all schemes and compare their running
times using multiple di↵erent instantiations of chameleon hash functions. Our results show a
performance gain by a factor of up to 2.

2


	Summary
	Related Work

	VDS and its Security
	Fully Dynamic CATs
	Chameleon Hash Functions
	Definition of Chameleon Authentication Trees
	Security of Chameleon Authentication Trees
	Naïve Approaches do not Work
	Intuition
	Construction
	Security Analysis

	t-bounded Dynamic CATs
	Intuition
	Construction

	Implementation
	Evaluation
	CATs from Weaker Assumptions
	CATs from Chameleon Hash Functions

	CATs From Trapdoor Commitments
	Intuition
	Trapdoor Commitments
	The Construction

	Stronger Security Notions of VDS
	Chameleon Hash Functions
	Krawczyk and Rabin
	Nyberg Rueppel
	Strong Fiat Shamir

	Proof of Theorem 5

