Towards Trustworthy Aerospace Systems using Formal Methods

Joost-Pieter Katoen

Software Modeling and Verification Group RWTH Aachen University

Grande Region Security and Reliability Day 2013, Luxembourg

joint work with Marco Bozzano, Harold Bruintjes, Alessandro Cimatti, Christian Dehnert, Marie-Aude Esteve, Viet Yen Nguyen, Thomas Noll Xavier Olivé, Bart Postma, Marco Roveri and Yuri Yushstein

Introduction and Challenges

Joost-Pieter Katoen

Overview

Towards trustworthy aerospace system

Introduction and Challenges

2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modeling

3 Analysis Facilities

• Property Specification

Industrial Evaluation

5 Conclusions and Outlook

Agenda

Introduction and Challenges

2 System Specification

owards trustworthy aerospace system

- Behavioural Modeling
- Formal Semantics
- Error Modeling

3 Analysis Facilities


- Property Specification
- 4 Industrial Evaluation
- **5** Conclusions and Outlook

Joost-Pieter Katoen

Towards trustworthy aerospace systems

Introduction and Challenges

Aerospace systems

Weather satellite

Ariane 5

satellites

Mars Pathfinder

Space station ISS

A Lego starwars ship

2/44

Introduction and Challenges

Another aerospace system

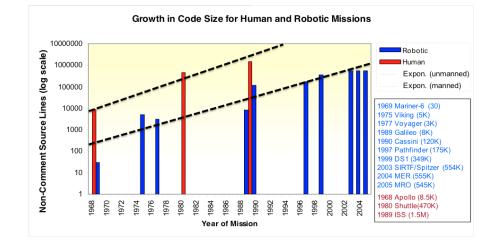
Extreme dependability!

wards trustworthy aerospace systems

- They must offer service without interruption for a very long time typically years or decades.
- 'Five nines' dependability is not sufficient.
- ► Faults are costly and may severely damage reputations, e.g. Ariane 5.

Joost-Pieter Katoen	
Towards trustworthy aerospace systems	Introduction and Challenges

Challenges


- Rigorous design support and analysis techniques are called for.
- Bugs must be found as early as possible in the design process.
- > Check performance and reliability guarantees whenever possible.
- The effect of Fault Detection, Isolation and Recovery (FDIR) measures must be quantifiable.

Joost-Pieter Katoen

Towards trustworthy aerospace systems

Introduction and Challenges

Spacecraft := flying software

NASA Study Flight Software Complexity (2009)

Introduction and Challenges

ntroduction and Challenges

Spacecraft design process

Activities	Phases						
Activities	Phase 0	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F
Mission/Function		MDR	PRR				
Requirements			Į ^{srr} ,	PDR			
Definition					CDR		
Verification					₽QR		
Production						AR ORR FRR	
Utilization							ELR
Disposal							MCR

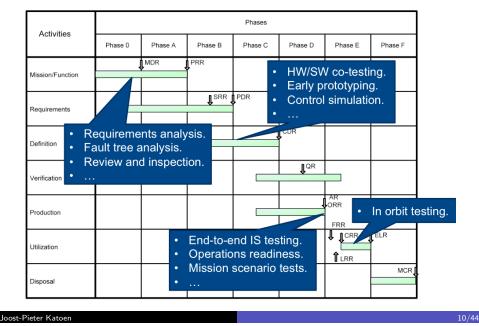
Joost-Pieter Katoen

Towards trustworthy aerospace systems

Q / 4 4

Weaknesses and limitations

Software is mostly verified in isolation from the target hardware.


Limited support for modeling fault models and degraded modes of operation.

Distinct modeling formalisms and analysis techniques for different system aspects.

Limited support for checking timed, hybrid, and probabilistic properties.

No coherent approach to study effectiveness of FDIR¹

Verification and validation in spacecraft design

wards trustworthy aerospace system

Introduction and Challenges

Our objective

Towards trustworthy aerospace system

Develop an integrated system-software co-engineering approach to ensure completeness and consistency from heterogeneous specification and analysis techniques.

Main ingredients should be a general-purpose modeling language, accompanied with a plethora of formal analysis techniques and supported by powerful software tools.

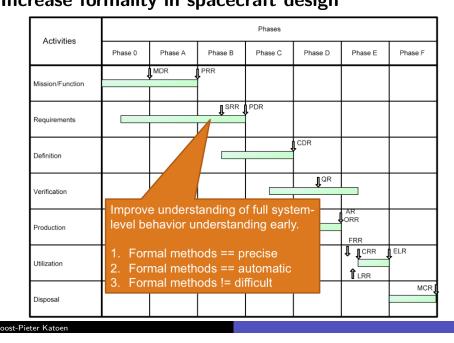
Current situation

Yes, "formal methods" are applied to aerospace systems, but not in a coherent manner at the systems engineering level.

COMPASS project partners

Consortium

- RWTH Aachen University
 Software Modeling and Verification
- Fondazione Bruno Kessler Embedded Systems Group
- Thales Alenia Space
 World-wide #1 in satellite systems
- Ellidiss
 GUI developer


Financial support + supervisor

European Space Agency

Joost-Pieter Katoen

Towards trustworthy aerospace systems

Introduction and Challenges

Increase formality in spacecraft design

Introduction and Challenges

Approach in a nutshell

owards trustworthy aerospace systems

Design a modeling language based on (core) AADL and its Error Annex.

Equip this modeling language with a formal semantics.

Use specification patterns to ease the specification of system properties.

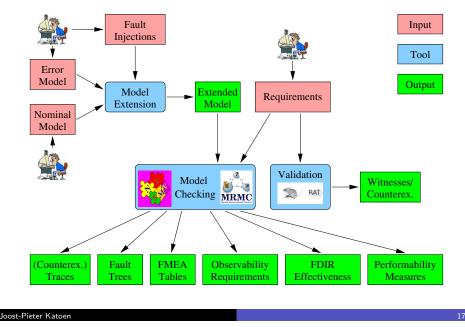
Support the system-engineering language by powerful model-checking tools for correctness, safety, performance and dependability analysis

Evaluate their effectiveness by industrial case studies.

Joost-Pieter Katoen

COMPASS phases

Towards trustworthy aerospace systems


1.	Project kick-off	February 2008
2.	Language design and software tool specification	
3.	Formal semantics	October 2008
4.	Prototype tool implementation	April 2009
5.	Prototype evaluation (by industry)	
6.	Final tool implementation	December 2009
7.	Final tool evaluation (by industry)	March 2010
8.	Project extension	until March 2011
9.	Follow-up projects (NPI, CGM, ESA Case Study)	until September 2012
10.	Future projects (HASDEL, D-MILS)	from November 2012

Total budget: \approx 1.3 MEuro; at peak times \approx 10 programmers involved

owards trustworthy aerospace systems

Introduction and Challenges

Approach

The industry standard AADL

owards trustworthy aerospace systems

Paradigm Architecture-based and 1989 MetaH . model-driven top-down and bottom-up engineering ► Real-time and performance critical distributed systems 1998 SAE AS-2C ٠ Complements component-based product-line development 2004 AADL 1.0 **2006** Error Annex 1.0 . LOCKHEED MARTIN A **2009** AADL 2.0 Error Annex 2.0 Honeywell : Rockwell Collins 2014 Error Annex 3.0 . sa FADS тоуота

System Specification

owards trustworthy aerospace systems **Overview**

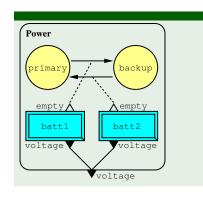
2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modeling
- 3 Analysis Facilities • Property Specification
- Industrial Evaluation
- 6 Conclusions and Outlook

Joost-Pieter Katoen

System Specification

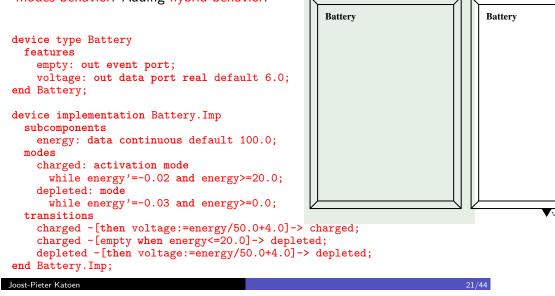
(Our) AADL example: redundant power system


Redundant power system

Towards trustworthy aerospace systems

- Contains two batteries
- Power switches from primary to backup mode (and back) when batt1 (batt2) is empty

We shall show:


- hybrid behaviour of the batteries
- composition of the power system
- formalisation to automata
- semantics as transition systems
- interweaving of errors

System Specification

Modeling a battery

Component type and implementation: Type defines the interface: Adding modes behavior: Adding hybrid behavior:

Towards trustworthy aerospace systems

System Specification

Deviations from AADL

Omissions

Some advanced features of AADL such as property associations, component refinement, prototypes, event data ports, in out ports, ...

Simplifications

(multi-way) synchronous communication (rather than asynchronous channel communication).

Extensions

- default values for data elements
- support for mode/error state history (upon component re-activation)
- hybridity, i.e., mode invariants, trajectory equations
- specification of observability requirements

Modeling the redundant power system

Power system with battery subcomponents: Addin Power Power reconfiguration: Adding port connections: orima: system Power features voltage: out data port real; end Power: empty \Lambda ∧empty empty batt2 batt1 batt1 system implementation Power.Imp voltage subcomponents voltage voltage batt1: device Battery.Imp in modes (primary); batt2: device Battery.Imp in modes (backup); voltage connections data port batt1.voltage -> voltage in modes (primary); data port batt2.voltage -> voltage in modes (backup); modes primary: initial mode; backup: mode; vo transitions primary -[batt1.empty]-> backup; backup -[batt2.empty]-> primary; end Power.Imp; Joost-Pieter Katoen Towards trustworthy aerospace systems System Specificatio Event-data automata Definition (Event-data automaton) An event-data automaton (EDA) is a tuple $\mathfrak{A} = (M, X, V, \iota, E, \rightarrow)$ {charged, depleted with voltage M finite set of modes energy ► $X = IX \uplus OX \uplus LX$ finite set of input/output/local variables • $V := \{v \mid v : X \to \ldots\}$ valuations while energy>=20.0 when energy<=20.0 • $\iota: M \to (V \to \mathbb{B})$ mode invariants • $E = IE \oplus OE$ finite set empty /output events then voltage:=... ► $\rightarrow \subseteq M \times (E \cup \{\tau\}) \times (V \rightarrow \mathbb{B}) \times (V \rightarrow V) \times M$ transition relation trigger guard effect

oost-Pieter Katoen

System Specification

Networks of event-data automata

Dynamic reconfiguration

 \implies component activity and port connections mode dependent

Definition (Networks of Event-Data Automata)

A network of event-data automata (NEDA) is a tuple

$$\mathfrak{N} = ((\mathfrak{A}_i)_{i \in [n]}, \alpha, EC, DC)$$

with $n \ge 1$, $[n] := \{1, ..., n\}$, and

• each
$$\mathfrak{A}_i$$
 an EDA $\mathfrak{A}_i = (M_i, m_0^i, X_i, v_0^i, \iota_i, E_i, \rightarrow_i)$

- $M := \prod_{i=1}^{n} M_i$ set of global modes
- $\alpha: M \to 2^{[n]}$ activation mapping
- ► $EC: M \rightarrow (\{i.e \mid i \in [n], e \in E_i\})^2$ event connection mapping
- ▶ $DC: M \rightarrow (\{i.x \mid i \in [n], x \in X_i\})^2$ data connection mapping

Joost-Pieter Katoen

25/44

Towards trustworthy aerospace systems

System Specification

Error modeling

```
error model BatteryFailure
features
    ok: initial state;
    dead: error state;
    batteryDied: out error propagation;
end BatteryFailure;
error model implementation BatteryFailure.Imp
    events
    fault: error event occurrence poisson 0.01;
    transitions
    ok -[fault]-> dead;
    dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

Repair

reset events (not in example) can be sent from nominal to error model of same component to attempt to repair the occurred fault.

Fault injection

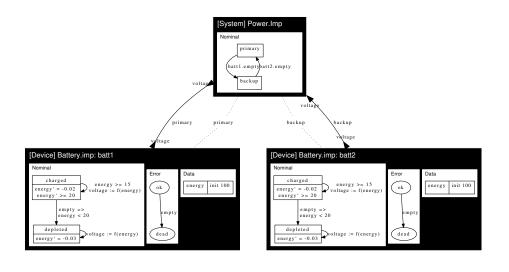
Joost-Pieter Katoen

linked through fault injection

System Specificatio

Operational semantics of networks of EDAs

Example (Power system)
$\langle m = \underline{primary}, v = 6.0 \rangle \langle m = \underline{charged}, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = \underline{charged}, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle$
↓ 40.0
$\langle m = primary, v = 6.0 \rangle \langle m = charged, e = 20.0, v = 6.0 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle$
$\Downarrow au \langle voltage:=\ldots \rangle$
$\langle m = primary, v = 4.4 \rangle \langle m = charged, e = 20.0, v = 4.4 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle$
$\downarrow \tau \langle empty \rangle$
$\langle m = backup, v = 6.0 \rangle \langle m = depleted, e = 20.0, v = 4.4 \rangle \langle m = charged, e = 100.0, v = 6.0 \rangle$
↓ 40.0
$\langle m = backup, v = 6.0 \rangle \langle m = depleted, e = 20.0, v = 4.4 \rangle \langle m = charged, e = 20.0, v = 6.0 \rangle$


Joost-Pieter Katoen

owards trustworthy aerospace systems

wards trustworthy aerospace systems

System Specification

The complete power system model

26/44

rds	trustworthy	aerospace	systems	

Analysis Facilities

Overview

Introduction and Challenges

2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modeling

3 Analysis Facilities

• Property Specification

Industrial Evaluation

5 Conclusions and Outlook

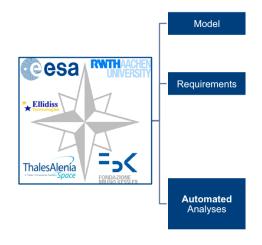
Joost-Pieter Katoen	29/44

Towards trustworthy aerospace systems

Analysis Facilities

Property specification: Patterns, no formulas!

Examples


- The system shall have a behaviour where with probability higher than p it is the case that Φ holds continously within time bound $[t_1, t_2]$.
- The system shall have a behaviour where Φ globally holds.

Implemented pattern systems

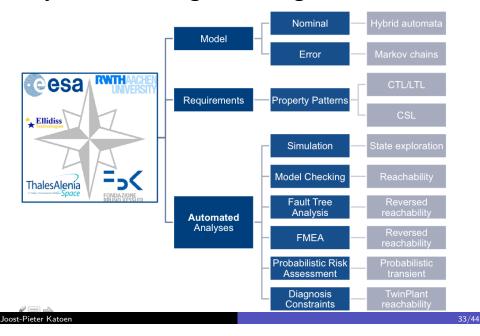
Formalism	Intended use	Authors
CTL, LTL	functional properties	[Dwyer et al., 1999]
MTL, TCTL	real-time properties	[Konrad & Cheng, 2005]
PCTL, CSL	probabilistic properties	[Grunske, 2008]

Analysis: Ingredients

owards trustworthy aerospace systems

Joost-Pieter Katoen

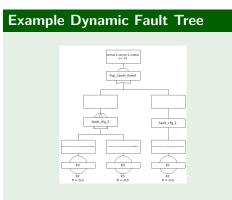
Towards trustworthy aerospace systems


Analysis: Techniques

Analysis Facilities

Analysis Facilities

Analysis: Models, Logics, and Algorithms


Towards trustworthy aerospace systems

Analysis Facilities

Fault Tree Analysis (FTA)

Dynamic FTs

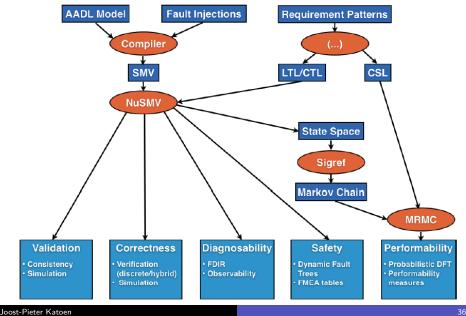
- Dynamic FTs extend FTs by considering dynamic aspects, such as: ordering constraints, functional dependencies, spares
- Dynamic FTs in COMPASS: priority ANDs (PANDs)

Failure Mode and Effects Analysis (FMEA)

Main features

- Inductive technique (bottom-up)
- Tabled representation of fault effects on system properties
- ▶ Widespread use in aerospace, avionics, and other domains

Example FMEA table


Ref. No.	Item	Failure Mode	Failure Cause	Local Effects	System Effects	Detection Means	Severity	Corrective Actions
1	Pump	Fails to operate	Comp. broken	Coolant temperature increases	Reactor temperature increases	Temperature alarm	Major	Start secondary pu
			No input flow					Switch to secondary cire
2	Valve	Stuck closed	Comp. broken	Excess liquid	Reactor pressure increases	Coolant level sensor	Critical	Open release valve
3		Stuck open	Comp. broken	Insufficient liquid	Reactor temperature increases	Coolant level sensor	Critical	Open tank valve

Joost-Pieter Kato

Analysis Facilities

Tool architecture

Towards trustworthy aerospace systems

owards trustworthy aerospace systems

Industrial Evaluation

1 Introduction and Challenges

2 System Specification

- Behavioural Modeling
- Formal Semantics
- Error Modeling

3 Analysis Facilities

• Property Specification

Industrial Evaluation

Towards trustworthy aerospace systems

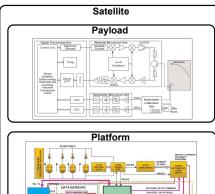
5 Conclusions and Outlook

Joost-Pieter Katoen

Industrial Evaluation

AADL model of satellite platform

Verification & validation objectives


- Ensure nominal and degraded conditions are handled correctly by the fault management system.
- Ensure performance and risks are within specified limits.

Model characteristics

Scope	Metric	Count
	Components	86
	Ports	937
Model	Modes	244
Model	Error models	20
	Recoveries	16
	Nominal state space	48421100
	LOC (without comments)	3831
	Propositional	25
	Absence	2
Requirements	Universality	1
-	Response	14
	Probabilistic Invariance	1
	Probabilistic Existence	1

Case study: Satellite of project

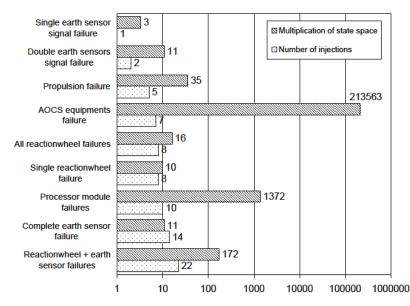
Launches between 2012-2020

Payload is mission-specific equipment, e.g.:

Industrial Evaluation

- ► telecom transponders,
- navigation signals,
- earth observation telemetry (weather, radiation, salinity).

Platform keeps the satellite orbiting in space, consists of:


- attitude & orbital control
- power distribution
- data handling
- communications
- thermal regulation

Joost-Pieter Katoe

Towards trustworthy aerospace systems

Industrial Evaluation

State space growth by fault injection

Industrial Evaluation

Analysis results²

Analysis	Fault injection	Time	Memory
		(in <i>s</i>)	(in MB)
LTL model checking	none	224	122
LTL model checking	single sensor failure	296	125
Hybrid BMC (depth 70)	single sensor failure	2176	1006
Fault tree analysis (TLE)	double sensor failure	555	134
Fault tree analysis (TLE)	AOCS equipment failure	2898	181

Analysis	Fault injection	Time	Memory
		(in <i>s</i>)	(in MB)
Dynamic FTA	AOCS equipment failure	5581	212
FMEA table generation	double sensor failure	1003	134
Fault detection analysis	double sensor failure	1173	142
Diagnosability analysis	double sensor failure	586093*	1474
Performability analysis	double sensor failure	33166*	2103

 $^2\mathsf{Setup:}$ Intel Xeon 2.33 GHz machine with 16 GB RAM.

Joost-Pieter Katoen

Towards trustworthy aerospace systems

Conclusions and Outlook

Summary

Achievements:

- Component-based model framework based on AADL
- ▶ Novelties: hybrid, error modeling, dynamic reconfigurations, ...
- Automated correctness, safety, and performability analysis
- Industrial evaluations showed maturity

In a nutshell: trustworthy aerospace design := AADL modeling + analysis

Future and current activities:

- Compositional model checking (ESA funded)
- Security and compositionality aspects in AADL (EU funded)
- Automated test generation from AADL models

Overview

Introduction and Challenges

2 System Specification

wards trustworthy aerospace system

- Behavioural Modeling
- Formal Semantics
- Error Modeling
- Analysis FacilitiesProperty Specification
- 4 Industrial Evaluation
- **5** Conclusions and Outlook

Joost-Pieter Katoen	42/44
Jobst-Frieter Katolen	42/44
Towards trustworthy aerospace systems	Conclusions and Outlook
Further information	
 Overview paper 	(Yushstein et. al, IEEE SMC-IT 2011)
AADL formal semantics	(Bozzano et. al, Computer J. 2011)
 Slicing of AADL specifications 	(Odenbrett et. al, NASA FM 2010)
AADL model checker	(Bozzano et. al, CAV 2010)
Our variant of the AADL language	e (Bozzano et. al, MEMOCODE 2009)
ESA case study	(Esteve et. al, ICSE 2012)

Fool download at http://compass.informatik.rwth-aachen.de/

Joost-Pieter Katoen